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A mathematical model of the process of formation of a temperature field in an infinite isotropic solid body
containing a spherical heating source with a thermally thin thermoactive coating of its surface has been pro-
posed. The obtained analytical solution of the corresponding problem of nonstationary heat conduction has
been used for substantiation of the possibility of acting on the temperature field of the system under study in
a controlled manner.

Investigations associated with a mathematical model of a spherical heating source and with studying the proc-
esses of heat and mass transfer in the solid body–gas system [4–10] occupy a highly important place in the applica-
tions of mathematical heat-conduction theory [1–3]. Despite the large number of publications, it is unlikely that
investigations on this problem may be considered as being completed. In particular, it remains topical to find the tem-
perature field in the system under study in the presence of a thermally thin coating on the surface of a spherical heat-
ing source. This problem is of special interest in investigations of the shock-wave sensitivity of energy materials
[11–13]. It involves substantiation of the possibility of acting on the temperature field of the system under study in a
controlled manner. One can attain this, for example, by surface phlegmatization of the heating source with the use of
both chemically inert low-strength and easily flowing (fluid) additions and those chemically active [13–15]. A coating
formed in the process of phlegmatization may be considered as being thermally thin, as a rule, because of its small
thickness.

The main objective of the investigations carried out is to study the distinctive features of the process of for-
mation of a temperature field in an infinite isotropic solid body containing a spherical heat source with a thermoactive
(heat-absorbing) thermally thin coating of its surface.

Formulation of the Problem and a Mathematical Model. Let us consider an infinite isotropic solid body
containing a spherical heating source (spherical cavity filled with high-temperature gas) with a thermoactive coating of
its surface; the specific heat-absorption power in it is equal to q (Fig. 1). We will assume that thermal contact in the
solid body–coating system is ideal and heat exchange with the gas filling the spherical cavity follows the Newton law
with a constant heat-transfer coefficient α [2, 3].

Under the assumptions made and in the presence of a central symmetry, the initial model of the process of
formation of a temperature field in an infinite isotropic solid body containing a spherical heating source with a ther-
moactive coating of its surface may be represented in the following form:
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where the last condition means that the function Θ(ρ, Fo) is square-integrable in the space variable ρ 8 [R, ∞] for
each fixed Fo > 0. In expressions (1), we have
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The assumption that the coating is thermally thin makes it possible to realize the idea of "lumped capacitance"
[16, 17]. Introducing the coating thickness mean-integral over the thickness

sΘ (Fo)t = 
3

R
3
 − 1

 ∫ 
1

R

Θc (ρ, Fo) ρ2
dρ

into consideration and making the assumption that the temperature of the coating boundaries is equal to both its mean-
integral temperature and the temperature of the surface ρ = R of a shielded spherical cavity, i.e.,

Θc (1 + 0, Fo) = Θc (R − 0, Fo) = sΘ (Fo)t = Θ (R + 0, Fo) ,   Fo ≥ 0 ,

Fig. 1. Calculated diagram for studying the process of formation of a tempera-
ture field in a solid body containing a spherical heating source with a ther-
mally thin thermoactive coating of its surface.
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we can simplify the initial mathematical model (1) and can transform it:
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where Q(Fo) = ∫ 
1

R

f (ρ, Fo)ρ2dρ is the integral quantity characterizing the heat-absorption regime realized in the ther-

mally thin coating and ε = (R2 − 1)/(3χΛ) is the dimensionless governing parameter. We note that, according to the

meaning of the problem being solved, the parameter ε takes on only positive values and is dependent on both the
coating thickness and the relation of the thermophysical characteristics of the solid-body and coating materials.

The mathematical model (2) represents a mixed problem of nonstationary heat conduction, in which the pres-
ence of a thermally thin coating is allowed for by the boundary condition for ρ = R explicitly containing a derivative
of temperature with respect to time. When ε = 0 (R = 1), its solution has been obtained in [1] using the integral
Laplace transformation in variable Fo. An analytical method of solution of problem (2) for ε = 0 for nonstationary re-
gimes of heat exchange with the gas filling a spherical cavity has been proposed in [8]. The foundation of this method
is the idea of splitting of the kernel of a mixed integral Fourier transform taken in the space variable.

To simplify further reasoning we introduce the function

V (ρ, Fo) = ρΘ (ρ, Fo) , (3)

using a well-known technique [1]. Then the mathematical model (2) will be represented in the form
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(4)

Problem (4) has a unique solution [18], to find which we use the integral Laplace transformation in the variable Fo
[1–3].

Temperature Field. Let the functions V(ρ, Fo), ζ(Fo), and Q(Fo) be the inverse transforms of the integral
Laplace transformation,

L [•] B ∫ 
0

∞

exp (− sFo)•dFo (5)
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being the operator of the direct integral Laplace transformation in the variable Fo with a parameter s 8 C, and

U (ρ, s) = L [V (ρ, Fo)] ,   Ψ (s) = L [ζ (Fo)] ,   Π (s) = L [Q (Fo)] . (6)

Then, according to (4) and (6), the transform U(ρ, s) of the integral Laplace transformation (5) of the function V(ρ,
Fo) must satisfy the equation

sU (ρ, s) = 
d

2
U (ρ, s)
dρ2  ,   ρ > R , (7)

and the boundary condition

R
2
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 = [(Bi + R) + εs] U (ρ, s) − R [Bi Ψ (s) − Π (s)] ,   ρ = R , (8)

and must belong to the class of L2[R, +∞] functions quadratically integrable in the space variable ρ 8 [R, +∞] for each
fixed value of the parameter s.

The solution U(ρ, s) of Eq. (7) from the L2[R, +∞] class has the following form:

U (ρ, s) = C (s) exp (− ρ √s ) ,   ρ ≥ R , (9)

where the function C(s), according to (8) and (9), is determined as

C (s) = 
R [Bi Ψ (s) − Π (s)]

εs + R
2
 √s  + (Bi + R)

 exp (R √s) . (10)

To complete the procedure of solution of problem (4) we must also realize the passage from the transform
U(ρ, s) determined by equalities (9) and (10) to the inverse transform V(ρ, Fo), which makes it possible, taking into
account equality (3), to find the temperature field Θ(ρ, Fo) of the infinite solid body containing a spherical heating
source with a thermally thin coating of its surface. Setting

ζ (Fo) = L
−1

 [Ψ (s)] ,   Q (Fo) = L
−1

 [Π (s)] , (11)

where L−1[•] is the operator of inversion of the integral Laplace transformation, taking into account equality (3) and
the convolution theorem [2], we obtain
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Thus, if the form of the dependences ζ(Fo) and Q(Fo) is specified, to determine the temperature field in the
solid body we must only find the inverse transform ϕ(ρ, Fo) of the corresponding transform. We note that, according
to equality (13), there can be three representations of the function ϕ(ρ, Fo) depending on the character of the roots of
the quadratic equation z2 + ε−1 [R2z + (Bi + R)] = 0 [2, 19] in passage to the inverse transform:

432






Bi < 

R
4

4ε
 − R




 ⇒ ϕ (ρ, Fo) = 

1
ε (µ2 − µ1)

 L
−1

 






1
√s  + µ1

 − 
1

√s  + µ2




 exp 


− (ρ − R) √s 







 B

B 
1

ε (µ2 − µ1)
 ∑ 

k=1

2

(− 1)k µk exp 



µk (ρ − R) + µk

2
 Fo




 erfc 




µk √Fo  + 

ρ − R

2 √Fo




for µk = (2ε)−1[R2 + (−1)k √R4 − 4ε(Bi + R) ], k 8 1, 2

,







Bi = 

R
4

4ε
 − R







 ⇒ ϕ (ρ, Fo) = 

1

ε
 L
−1

 




exp 

− (ρ − R) √s 




(√s  + µ)2



 B

B 
1

µ2 erfc 




ρ − R

2 √Fo




 − 

2

µ
 √Fo

π
 exp 










− 
(ρ − R)2

4Fo










 +

+ 



2Fo + 

ρ − R

µ
 − 

1

µ2




 exp 



µ (ρ − R) + µ2

Fo


 erfc 





ρ − R

2 √Fo
 + 2 √Fo





(14)
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where
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 R

2
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2
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is the complementary Gaussian error function of the real argument [2].
Investigations of the temperature state of the surface ρ = R of the spherical heating source are of greatest

practical interest. This is important in both evaluating the maximum possible temperatures in the solid body and in es-
tablishing the possibility of acting on its temperature field in a controlled manner. We consider these problems in
greater detail, restricting further analysis to the case ζ(Fo) = 1, i.e., taking the temperature of the gas filling the spheri-
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cal cavity to be constant. Along with the available physical interpretation [11, 13], this case is important in testing the
results obtained, since it leads to the simplest representations of the solution Θ(ρ, Fo) of problem (2).

Let Θ
~

(R, Fo) be the temperature of the surface ρ = R of a solid body containing a spherical heating source with
an inert thermally thin coating of its surface. For the function Θ(ρ, Fo), representation (12) in this case takes the form
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where the function ϕ(ρ, Fo) is determined by equalities (14) and the function Θ
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according to (12) and (13), as
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The corresponding variants of representation (16) of the function Θ(R
~

, Fo) depending on the character of the roots of
the quadratic equation z2 + ε−1 [R2z + (Bi + R)] = 0 have the form [2, 19]
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where µ
__

1 = µ2, µk = (2ε)−1 [R2 + i(−1)k √4ε(Bi + R) − R4 ], k 8 1, 2

, β = (2ε)−1R2, and γ = (2ε)−1√4ε(Bi + R) − R4 .

Analysis of the Results Obtained. When Q(Fo) = 0, equalities (15) and (17) determine the temperature pro-
file of the surface ρ = R of the infinite solid body containing a spherical heating source with an inert thermally thin
coating at a constant temperature of the gas (ζ(Fo) = 1). It can be shown that, for high Fo values, equality (17) leads
to the following asymptotic estimate of the maximum temperature of the surface ρ = R of the spherical source:

Θ (R, Fo) D 
Bi

Bi + R
 



1 − 

R
2

(Bi + R) √πFo




 .

It follows that the qualitative character of behavior of the function Θ(R, Fo) is dependent on both the thickness of the
thermally thin coating and the intensity of heat transfer on its surface for Fo → +∞, i.e., Θ(R, Fo) → Bi/(Bi + R) for
Fo → +∞. Thus, the presence of the thermally thin coating leads to a reduction in the value of the maximum attain-
able heating of the solid-body surface, which improves its thermal protection. At the same time, an analogous evalu-
ation of the maximum temperature of a half-space with a thermally thin coating of its surface in high-temperature
heating by the ambient medium leads us to a fundamentally different conclusion [17]: the value of the maximum at-
tainable heating is dependent on neither the thickness of the coating nor the intensity of heat transfer on its surface in
this case.

We consider the case Q(Fo) > 0 without specifying the form of the function Q(Fo) characterizing the realized
law of heat absorption in a thermally thin coating. For preliminary analysis of the possibility of acting on the tempera-
ture field of a solid body in a controlled manner, we direct our attention to equality (12). Theoretically we can always
find the law of heat absorption Q(Fo) in the thermally thin coating of a spherical heating source for a prescribed law
ζ(Fo) of variation in the source temperature. Thus, e.g., if Θ(R, Fo) = 0 = const (thermostating regime), then, accord-
ing to (12), we obtain

Q (Fo) = Bi ζ (Fo) . (18)

When ζ(Fo) = 1, it follows from (18) that Q(Fo) = Bi = const, i.e., the law of heat absorption in the thermally thin
coating is uniquely determined by the intensity of heat transfer on its surface ρ = 1. The thermal inertia of the coat-
ing, unlike [20], exerts no influence on the temperature profile of the heat-insulated surface of the solid body.

Thermoactive coatings with a time-variable specific power of heat absorption in a thermally thin layer are of
practical interest. As an example illustrating the possibility of acting, in a controlled manner, on the temperature field
of a solid body with the use of coatings of this kind, we consider a pulsed regime with a constant specific power of
heat absorption in the coating Q0:

Fig. 2. Temperature profile Θ(R, Fo) of a solid body with a spherical heating
source in realization of a pulsed regime of heat absorption in a thermally thin
coating.
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Q (Fo) = Q0 [η (Fo) − η (Fo − Fo
∗)] .

Figure 2 gives the temperature profile of the surface ρ = R of the solid body with a spherical heating source
at a constant temperature of the gas contained in it (ζ(Fo) = 1). The calculation has been carried out for Bi = 1 =
Q0, the duration of the phase of heat absorption in the coating Fo∗ = 1, and ε → +0. It is seen that the "compensat-
ing" heat absorption in the thermally thin coating enables us to thermostat the surface of the solid body during a pre-
scribed time interval Fo 8 [0, Fo∗), maintaining its surface temperature constant. Also, it is noteworthy that the
qualitative character of behavior of the function Θ(R, Fo) for high Fo values is the same as that for Q(Fo) = 0:
Θ(R → 1 + 0, Fo) → 0.5 for Fo → +∞.

Thus, the results of the investigations carried out point to the possibility of acting, in a controlled manner, on
the temperature field of an infinite solid body containing a spherical heating source with a thermoactive thermally thin
coating of its surface, which ensures programmed variation in the temperature of the heat-insulated surface. Further
prospects for acting on the temperature field of a solid body with a spherical heating source in a controlled manner
may also involve the realization of nonstationary heat-exchange regimes associated with destruction of the surface lay-
ers of the thermoactive coating in the process of its high-temperature heating [21–23] in the system under study [8].

NOTATION

a, thermal diffusivity, m/sec2; Bi, Biot number; C, set of complex numbers; Fo, Fourier number; Fo∗, dura-
tion of the phase of heat absorption in the thermally thin coating; f, dimensionless specific power of heat absorption
in the coating; i, imaginary unit; L[•], operator of the direct integral Laplace transformation; L−1[•], operator of the
inverse integral Laplace transformation; L2[R, +∞), linear space of functions square-integrable on a semiinfinite inter-
val [R, +∞); Q, integral quantity characterizing the realized regime of heat absorption in the thermally thin coating; q,
specific (per unit volume) power of heat absorption in the coating, W/m3; R, dimensionless radius of the contact sur-
face of the solid body with the coating; r, radius, m; r1, radius of the spherical heating source, m; r2, radius of the
contact surface of the solid body with the coating, m; s, parameter of the integral Laplace transformation; T, tempera-
ture, K; t, time, sec; α, heat-transfer coefficient, W/(m3⋅K); ε, dimensionless governing parameter of the "lumped-ca-
pacitance" model; ζ, dimensionless temperature of the ambient medium; η(•), Heaviside unit function; Θ, dimension-
less temperature; sΘt, mean-integral temperature; Λ, dimensionless parameter characterizing the relative thermal con-
ductivity of the solid body; λ, thermal conductivity, W/(m3⋅K); ρ, dimensionless radius; χ, dimensionless parameter
characterizing the thermoinertial properties of the solid body relative to the coating. Subscripts: c, coating; m, ambient
medium; 0, initial value; 1, coating surface subjected to high-temperature heating; 2, contact surface of the solid body
with the coating.

REFERENCES

1. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids [Russian translation], Nauka, Moscow (1964).
2. A. V. Luikov, Heat-Conduction Theory [in Russian], Vysshaya Shkola, Moscow (1967).
3. E′. M. Kartashov, Analytical Methods in the Theory of Heat Conduction of Solids [in Russian], Vysshaya

Shkola, Moscow (2001).
4. H. Parkus, Instantiona

..
re Wa

..
rmespannungen [Russian translation], Fizmatgiz, Moscow (1963).

5. A. G. Merzhanov and F. I. Dubovistkii, State-of-the-art of the theory of thermal explosion, Usp. Khim., 35, No.
4, 656–683 (1966).

6. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics [in Russian], Nauka, Moscow
(1987).

7. E′. M. Kartashov, V. M. Nechaev, and G. M. Bartenev, Thermoelastic reaction of an infinite medium with a
spherical heated cavity, Fiz. Khim. Obrab. Mater., No. 2, 26–35 (1981).

8. A. G. Merzhanov, V. V. Barzykin, and V. G. Abramov, The theory of thermal explosion: From N. N. Semenov
to our days, Khim. Fiz., 15, No. 6, 3–44 (1966).

436



9. A. V. Attetkov and I. K. Volkov, A temperature field of the region with a spherical heating source,  Vestn.
MGU im. N. E′ . Baumana, Estestvennye Nauki, No. 1, 42–50 (2001).

10. G. A. Nesenenko, Solution of Problems of Irregular Nonlinear Heat and Mass Transfer by a "Geometrical-Op-
tical" Asymptotic Method [in Russian], Izd. Birsk. GPI, Birsk (2003).

11. B. A. Khasainov, A. V. Attetkov, and A. A. Borisov, Shock-wave initiation of energy materials and a viscous-
plastic model of hot spots, Khim. Fiz., 15, No. 7, 55–125 (1996).

12. G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Media
[in Russian], Yanus-K, Moscow (1996).

13. L. P. Orlenko, Physics of Explosion [in Russian], in 2 vols., Vol. 1, Fizmatlit, Moscow (2002).
14. S. G. Andreev, Influence of nonexplosive chemical additives on decomposition of energy materials under low-

velocity mechanical and shock-wave effects, Khim. Fiz., 19, No. 2, 76–81 (2000).
15. V. P. Il’in, S. P. Smirnov, and A. S. Smirnov, Correlation between the critical parameters of excitation of ex-

plosion of mixture explosives and their composition and structure. Principles of compounding low-sensitive
compositions, in: Ext. Abstr. of Papers Presented at Int. Conf. "III Kharitonov Topical Scientific Readings" [in
Russian], Sarov (2001), pp. 7–8.

16. M. A. Pudovkin and I. K. Volkov, Boundary-Value Problems of the Mathematical Theory of Heat Conduction
as Applied to Calculations of Temperature Fields in Oil Beds under Flooding [in Russian], Izd. Kazansk.
Univ., Kazan’ (1978).

17. A. V. Attetkov, P. A. Vlasov, and I. K. Volkov, Temperature field of a half-space with a thermally thin coat-
ing in pulsed modes of heat exchange with the environment, Inzh.-Fiz. Zh., 74, No. 3, 81–86 (2001).

18. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Parabolic Equations [in
Russian], Nauka, Moscow (1967).

19. V. A. Ditkin and A. V. Prudnikov, Handbook of Operational Calculus [in Russian], Vysshaya Shkola, Moscow
(1965).

20. A. V. Attetkov, I. K. Volkov, and E. S. Tverskaya, Thermoactive lining as a means for controlled effect on the
temperature field of the structure, Izv. Ross. Akad. Nauk, E′nergetika, No. 4, 131–141 (2002).

21. G. N. Tret’yachenko and L. N. Gracheva, Thermal Deformation of Nonmetallic Destructive Materials [in Rus-
sian], Naukova Dumka, Kiev (1983).

22. Yu. I. Dimitrienko, Mechanics of Composite Materials at High Temperatures [in Russian], Mashinostroenie,
Moscow (1997).

23. E′. M. Kartashov, B. Tsoi, and V. V. Shevelev, Structural-Statistical Kinetics of Polymer Destruction [in Rus-
sian], Khimiya, Moscow (2002).

437


